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Cervical Cell Recognition and Morphometric Grading by 
Image Analysis 

James W. Bacus, PhD 

Bacus Research Laboratories, Inc., Elmhurst, IL 60126 

Abstract Cervical cell recognition by morphometric image analysis was compared to human visual cell 
recognition on the same 6,375 cells from 40 dysplastic, CIS, invasive, and 10 normal pap' smears. The 
experimental approach defined receiver operating characteristic (ROC) curves for morphometric image 
analysis which could be rigorously compared to previously established human visual cell recognition 
ROCs on the same cells. Overall performance was measured by A,, the area under the ROC curves in 
the two instances. For morphometric image analysis cell recognition, A, = 0.91, and for human visual 
cell recognition, A, = 0.57. These results clearly demonstrated that morphometric image analysis is 
equivalent to experienced human observers in ability to recognize isolated cells from cervical smears. 

An approach was also developed to link the ROC analytic methods of this study to a cytopathological 
or histopathological grading system, or "scale", that could be expressed in terms of normal deviate units 
of morphometric descriptors. This approach has the advantage of describing the grading scale in terms 
of its ROC characteristics; in essence, it describes performance for that grading scale at any decision 
point along the scale, if used for two-category classification. Additionally, this concept provides for a 
uniform final scale, regardless of which cells or tissues are graded. Also, this type of grading scale 
would automatically adjust itself for measurement variance for different types of cells or tissue, by 
reference to normal cells or tissues, so that a standard reference could be maintained. 
0 1995 Wiley Liss, Inc. 
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One of the issues related to computerized 
morphometric image analysis of cells and tissues 
is determining performance criteria. This is im- 
portant whether one is using this technology to 
classify cells or to grade cells along a scale of 
maturation or atypia. Since morphometric image 
analysis often replaces a human visual assess- 
ment, there is often a requirement to characterize 
the "performance" of the visual assessment, e.g., 
the ability of the human observer to recognize 
malignant and normal cells or tissue, in a man- 
ner consistent with morphometric image analy- 
sis, and then to use the "human performance" as 
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a benchmark standard for comparison purposes. 
In this regard, a previously reported study deter- 
mined cervical cell discrimination ability by the 
human observer using conventional psychophys- 
ics and signal detection theory methodology, 
with a Gaussian signal detection model [l]. This 
study rigorously defined human observer re- 
ceiver operating characteristic curves (ROCs), 
both for isolated individual malignant cell detec- 
tion and for the visual assessment of the entire 
slide, i.e., slide screening. This paper reports re- 
sults of morphometric image analysis and cell 
classification, performed on the same cells used 
in the human recognition studies. Also, a method 
of morphometric grading, conceptually linked to 
multicategory cell classification and two category 
ROC analysis, is proposed. These results were 
obtained using a Gaussian classification model, 



which corresponded to the analysis assumptions 
used in the human recognition studies. Thus, 
morphometric image analysis ROC characteristics 
were compared in a directly analogous manner 
to previously obtained human performance 
ROCs to document the capability of computer- 
ized morphometric image analysis. 

MATERIALS AND METHODS 

Data Acquisition 

Case material collection and cell acquisition 
for photomicroscopy has been described previ- 
ously [l]. Briefly, 50 consultant-reviewed cases of 

p normal, dysplastic, carcinoma in situ and inva- 
sive cervical cases were studied. To obtain the 
microscope slide screening ROC performance, 
these cases were randomly mixed with 1,147 
routine cytology cases; all of the microscope 
slides were screened in the conventional manner 
by 10 experienced cytotechnologists. The ROCs 
were determined for this process by using these 
results and other literature studies relating to 
slide screening, but with varying false positive 
and false negative decision criteria. Secondly, 
6,375 individual cell photomicrographs were ac- 

quired in a stratified random sampling study 
design from these same specimens. These were 
used to obtain human cell recognition ROCs. The 
photomicrographs of each cell were obtained 
with and without background and associated 
surrounding cells in order to compare the effects 
of surrounding background on cell recognition. 
Thus the recognition studies involved the inde- 
pendent "blinded" use of both types of photomi- 
crographs. One such pair of photomicrographs is 
shown in Figure 1. 

A primary aim of these studies was to obtain 
descriptions of cell recognition independent of 
the arbitrary selection of decision thresholds. De- 
tection capabilities were thus determined using 
ROC methodology from signal detection theory 
[2,3]. The area under the ROC curve, A,, was 
chosen as the standard of comparison between 
individuals and between slide screening and cell 
recognition. This allowed a comparison of entire 
ROC curves instead of individual points. How- 
ever, the point at which an individual could op- 
erate, i.e., which performance specification in 
terms of the probability of false positives or false 
negatives is adhered to, could still be examined 
later to understand the relationships between in- 
dividual cell recognition and slide screening. 

Fig. 1. Examples of photomicrographs used in the human 
observer visual cell recognition studies. Phomicrograph (a) 
included the entire microscope field of view, while photo- 
micrograph (b) was electro-optically altered during the data 

acquisition process to blank-out the surrounding back- 
ground, leaving only the cell of interest for the observer to 
classify. 
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The photomicrographed cells were also digi- 
tized at several different spectral wavelengths 
and resolutions using a cell acquisition system 
centered around a Leitz Orthoplan microscope. 
The optical path included a 100 x Plan Apo ob- 
jective and a 1.25 x nosepiece. A standard 100 
watt tungsten halogen lamp was used as a light 
source. The microscope was equipped with an 
electronic scanning stage capable of two dimen- 
sional translation over an area of 2 cm by 2 cm 
in 10 pm steps. Modifications to the microscope 
included a special stage clamp to enable most of 
the 24 mm by 50 mm specimen slides to be ac- 
cessed by the scanning stage, a 6-position com- 
puter-controlled filter wheel mounted below the 
condenser, and replacement of the standard ob- 
servation tube with a specialized optical system 
necessary to acquire the data. The filter wheel 
was configured with six filters to aquire digital 
images at several narrow bandpass wavelengths, 
to aquire photomicrographs, and for observation 
by cytotechnologists during data acquisition. A 
separate optical path from the objective to a solid 
state camera was used to obtain the digitized 
cellular images. A swing lens was used to obtain 
digital images at two resolutions, a low resolu- 
tion of 80 pm by 80 pm mapped onto a 128 x 128 
pixel digital image (i.e./ 0.625 pm between pix- 
els), and a higher resolution of 16 pm x 16 pm 
(resulting in 0.125 pm between pixels). Four digi- 
tized images were obtained from each cell. Three 
images, 528 nm, 576 nm and 632 nm, each at a 
bandpass of 9 nm, were at low resolution, in- 
cluding cell and background, with different color 

filters chosen to match the Papanicolaou stain 
[4]; one image of the nucleus only was at high 
resolution with no color filter. 

Morphometric Image Analysis 

As indicated above, digital images were ac- 
quired at two resolutions and at different spec- 
tral wavelengths. A number of features were 
analyzed in an interactive fashion to determine 
a reasonable set. Table I indicates the set of fea- 
tures finally used. These features represented 
standard, state-of-the-art parameters for cell de- 
scrip tion, and there was ample precedence in the 
literature for their use [5,61. They included stan- 
dard measurements of area, density, color, shape 
and texture. As indicated above, we were partic- 
ularly interested in employing a multivariate 
Gaussian classifier in the morphometric studies 
because of potential comparison to the Gaussian 
signal detection model and performance results 
of the psychophysical studies. One of the prob- 
lems with this approach was that the features 
chosen, i.e., those listed in Table I, were not all 
distributed in a Gaussian manner. In order to 
correct this, a number of normalizing scale trans- 
formations were tried [7]; the resulting distribu- 
tions were tested for normality by the chi square 
goodness of fit test. The transformation with the 
lowest chi square value was selected for each 
feature. Table I also lists the normalizing trans- 
formations that were finally used. 

For the multivariate Gaussian classification 
experiment, a normal versus abnormal classifier 

TABLE I. Summary of Individual Cell Measurement 
Cell Measurements Resolution Transformation 

Nuclear area low y = In (x) 

Nuclear/cytoplasm ratio low y = [(x/(l-x)l 

Cytoplasm shape (perimenter2/area) low y = [(x/(l-x)l 

Average nuclear density at 528 nm low y = [(x/(l-x)l 

Average nuclear density at 632 nm low none 

Markovian angular second moment at 0.125 pm 

Markovian sum entropy at 0.375 pm 

high y = arcsin (x)''' 

high y = In (x) 

Markovian maximum correlation coefficient at 1.375 pm high y = l (X/ ( l -X) l  



was constructed for the eight dimensional trans- 
formed feature space. The mean vectors and co- 
variance matrices of each group were obtained 
from training on one half of the data (the train- 
ing set), chosen randomly. Several classification 
runs were then performed on the other half of 
the data (the testing set), each time varying the 
a priori probabilities in the multivariate Gaussian 
model. This is exactly analogous to a human 
observer changing decision criteria, or changing 
detection thresholds and rereading the entire 
data set in a psychophysical experiment. The 
computer could of course perform this simula- 
tion very rapidly and precisely to obtain multiple 
points defining its ROC curve, whereas it is often 
impractical to do this with human observers. 

ROC Analytic Methods 

As indicated above, one of the aims of these 
studies was to obtain measures of cell recogni- 
tion free of judgemental bias, ix., to obtain mea- 
surements of recognition ability independent of 
the selection of decision criteria. In this type of 
cell recognition, the selection of decision criteria 
is related to judgments regarding the progression 
of normal maturation sequences or judgments 
related to the progression of atypia to carcinoma. 
One way of handling problems of decision crite- 
ria and judgemental bias in data analysis is the 
ROC analytic method [21. Figure 2 illustrates 
some of the concepts of the ROC method. In the 
classical sense, the method is applied when con- 
sidering two overlapping distributions such as 
shown in Figure 2a. The distribution on the left 
represents the results of measuring some charac- 
teristic of normal individuals, and the distribu- 
tion on the right represents the results of mea- 
suring the same characteristic on abnormal indi- 
viduals. The intent is to develop a decision rule 
based upon the measurements to characterize or 
distinguish normal from abnormal. In psycho- 
physical signal detection theory, where the ROC 
method was first employed, the distribution on 
the left is considered noise and the one on the 
right is the distribution of possible signals. The 
abscissa is shown in standardized units scaled to 
zero mean and a standard deviation of one for 
the normal category. Typically the abnormal cat- 
egory has a higher mean value and a higher 
standard deviation than the "noise" or normal 
distribution. The decision rule is simply a crite- 

rion value on the abscissa, such that individuals 
with values above the criteria are abnormal and 
below it are normal. Clearly, overlapping distri- 
butions can cause false positive (FP) or false neg- 
ative (FN) errors, and different decision rules 
will produce different FP and FN error rates. The 
correct responses in each case are called true 
positive (TP) and true negative (TN). As an ex- 
ample, the ROC curve shown in Figure 2b 
graphically depicts the complete set of FP and 
FN responses for the distributions shown in Fig- 
ure 2a. The shape of the curve is governed by 
the distance between the respective means and 
the standard deviations of the signal distribution 
compared to the noise distribution. An increased 
separation of the means produces increased cur- 
vature towards lower FP and FN values; in- 
creased differences in the standard deviations 
increases the asymmetry of the ROC curve. In 
psychophysical studies, ROC curves are usually 
depicted as in Figure 2c and Figure 2d. Figure 2c 
is analogous to the FP versus FN curve of Figure 
2b, where (1-FN), i.e., TP, is plotted instead. This 
curve is often transformed to the binormal coor- 
dinate space for analysis purposes, shown in 
Figure 2d. The advantages of transforming to 
binormal coordinates is that the ROC is linear for 
normally distributed data. The straight line ROC 
has the parameters Am for the x intercept and s 
for the slope. These parameters can be estimated 
for experimental data by fitting a straight line to 
plotted points. Also, the slope of the straight line 
ROC is the reciprocal of the standard deviation 
of the abnormal distribution, expressed in nor- 
mal deviate units of the normal distribution. The 
intercept of the straight line ROC on the bi- 
normal abscissa is equal to the difference 
between the means of the distributions. 

When comparing different ROC curves, it is 
convenient to use an index of performance, a 
single number to characterize how well the mea- 
surement variable can separate normal from ab- 
normal. The index of performance commonly 
used in psychophysics experiments is A,, the 
area beneath the original TI', versus FP ROC 
curve before conversion to binormal coordinates. 
Figure 2c illustrates the meaning of the detection 
index A,, its relation the original false positive 
(FP) and true positive (TP) coordinate space, and 
the transformed binormal coordinate space. 
Clearly, A, ranges from 0.0 to 1.0, and an A, of 
0.5, i.e., with the ROC curve lying on the major 
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diagonal, represents chance behavior. An A, of 
1.0, ie . ,  with the curve showing p(TP) = 1.0 and 
p(FP) = 0, represents perfect cell recognition. The 
value A, is obtained by computing z(A) = s(Arn/l 
+ s2) and referring to the standard normal distri- 
bution. A, is the area under the normal distribu- 
tion up to the value of z(A). The experimental 
data points are fitted in the binormal coordinate 
space because of the linearity in that space; how- 
ever, the computed performance index actually 
relates back to the original p(FP), p(TP) space. 

In a strict sense, conventional ROC analysis is 
limited to two stimuli (or classification) alterna- 
tives, e.g., normal versus abnormal for a cell 
type. Thus, one of the experimental problems in 
this study was to allow the observers to inspect 
and describe the visual material in the traditional 
classification form and then, through analysis 
procedures, transform their responses into a two- 
response form. This was accomplished by con- 
densing the multicategory confusion matrix of 
the initial recorded classifications to obtain dif- 
ferent "groupings" of cell categories [l]. Thus, 
multiple points along the ROC curve could be 
obtained from the same recorded data. This is 
analogous to using "rating method" analysis pro- 
cedures in psychophysics experiments [2]. An 
alternative method of achieving multiple points 
would have been to resubmit the cell photomi- 
crographs to multiple observations after instruct- 
ing the observers to change their decision criteria 
relating to definitions of cell type progression 
indicated above. In plotting ROC data and subse- 
quently computing performance indices, a nor- 
mal probability distribution was assumed. This 
assumption of normality, and also the cell rank- 
ing actually used with the rating method, was 
generally validated in this case since when the 
ROC data was displayed on binormal coordi- 
nates, the experimental data points evidenced a 
close fit to a straight line [l l .  

RESULTS 

The ROC curve results, comparing the 
morphometric cell classifier to the human ob- 
server cell classifications on the same cells from 
the psychophysical experiment, are shown in 
Figure 3a. The lower curve is for human visual 
cell recognition, which is the composite ROC 
from 10 observers on 50 cases, Am = 1.4, s = 1.33, 
and A, = 0.87 [l]. The upper curve is from re- 

10 30 !4W 50 70 90 

a 

-4 -2 0 2 4 6 
Normal Deviate 

0 7  

02 

0 1  t 

---u 
-4 -2 0 2 4 6 

Normal Devlate 

0 4  

C 
Fig. 3. (a) The composite binormal ROC for human visual 
cell recognition (lower line, Az = 0.87) compared to that 
obtained on the same cells by morphometric image analy- 
sis (upper line, A, = 0.91). The overlapping Gaussian distri- 
butions implied by the two ROC curves are shown in (b) 
and (c) for human visual cell recognition and morphometric 
image analysis respectively. 

sults of the computerized morphometric image 
analysis using the same features listed in Table 
I, on exactly the same cells. In this case, Am = 
1.71, s = 1.34 and A, = 0.91. Figures 3b and 3c 
show the corresponding overlapping Gaussian 
distributions implied by the ROC curves. The 
study design enabled comparing many different 
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classes individually with each other. Some of the 
results were compiled previously [ll. As an ex- 
ample, Figure 4 indicates the composite (for 10 
observers) pairwise comparison of normal versus 
dysplastic cervical cells in a format similar to 
Figure 3. The linear ROC is shown in Figure 4a; 
Am = 1.31, s = 1.42 and A, = 0.86. The implied 
distributions are shown in Figure 4b. In this in- 
stance, the normal deviate scale is labeled as a 
"grading scale" for reasons discussed below. 

DISCUSSION 

As indicated in Figure 3a, these results clearly 
demonstrate that morphometric image analysis is 
equivalent to experienced human observers with 
regard to the ability to recognize isolated cells 
from cervical smears. This level of ROC perfor- 
mance is similar to that of other difficult medical 
visual inspection tasks [21. Methods to link this 
level of ROC performance to the overall higher 
level of pap smear slide screening performance 
were addressed previously [ll, and it was shown 
that this individual cell recognition ability is suf- 
ficient to achieve slide screening with the num- 
ber of cells available for inspection. It was also 
shown that immediately surrounding back- 
ground cells did not increase the recognition cap- 
ability, i.e., cells with and without background 
had similar ROCs. It is important that individual 
cell recognition capability by morphometric im- 
age analysis, and equivalence to experienced 
human observer capability, is documented in a 
definitive way for at least one organ system, 
since morphometric image analysis is under seri- 
ous consideration as a generalized surrogate end- 
point biomarker (SEB) in many organ systems 
[8]. These specific ROC curves provide a docu- 
mented standard of potentially achievable perfor- 
mance for other algorithm development with 
regard to pap smear screening systems using 
image morphometry. 

Classification data in cell or tissue image anal- 
ysis by image morphometry is typically tabu- 
lated in a "confusion matrix" table. The rating 
method, which is commonly used in psycho- 
physical studies, is a unique way of analyzing 
confusion matrix data, where categories in the 
matrix are organized to relate to maturity (or 
atypia) transitions from one type of cell to an- 
other. This is often the case for cellular or tissue 

material, since the cells, or lesions, develop from 
one category to the next along a continuum. A 
"trained" observer should have the basic discrim- 
inatory ability to recognize subtle cues in map- 
ping the transition from one stage to another, but 
may place the cells or image structures into arbi- 
trary categories. Thus, the rating method can 
condense the multicategory confusion matrix into 
multiple p(FP) and p(FN) points, defining the 
analytic goals (the ROC curve) for the task. This 
method of analysis provides a better description 
of discriminatory ability than others commonly 
used, such as a single set of p(FP) and p(FN) 
points, or other indices of performance such as 
the kappa statistic. Other indices have been re- 
viewed and compared to each other by Swets 131. 

These results also suggest an approach to a 
cytopathological or histopathological grading 
system, or "scale", that could be expressed in 
terms of normal deviate units of morphometric 
descriptors. It is common practice in multivariate 
statis tical analysis to transform individual mea- 
surements to normal deviate units by subtracting 
the mean and dividing by the standard deviation 
for each measurement axis. This transformation 
simply shifts each measurement scale to zero 
mean and unit standard deviation using all of 
the data, and still preserves individual group or 
category differences. This transforms the data 
into "standard deviation units" and is sometimes 
referred to as the z variate, or z score. It is par- 
ticularly helpful if the different measurement 
scales occur in units with widely differing abso- 
lute values because it tends to put the different 
scales of the multivariate space in the same nu- 
merical range, but preserves group differences. 
Also, statistical techniques such as linear discrim- 
inate analysis "project" multivariate measure- 
ments onto a one dimensional decision axis to 
make decisions that occur with a two category 
ROC analysis, such as normal versus abnormal. 
If the above-described transformation to normal 
deviate units is applied using the mean and stan- 
dard deviation of the normal category only, and 
applied to all measurements prior to projection 
onto a one-dimensional axis, the result after pro- 
jection would be a uniform morphometric scale 
expressed in normal deviate units of the "noise" 
or normal category, similar to that shown in Fig- 
ure 2a. This suggestion is more strictly correct 
with uncorrelated variables. However, in a more 
detailed implementation, the principle compo- 
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nents of the distributions would be accounted 
for, in order to account for possible correlation 
among the descriptive measurements. Sometimes 
this is automatically accomplished with the 
method of projection on a discriminant axis. 
Gaussian transformations, if necessary, e.g., as 
used in this study, should be performed before 
this "grading transformation." 

A limitation of this proposed grading scale is 
an implied assumption of similar correlation be- 
tween normal and abnormal categories which 
might not hold. However, a very positive advan- 
tage is that of relating ROC curve methodology 
to "grading scale" methodology; quite often there 
is reasonably similar correlation between the 
same measurements. This would allow further 
characterization of scales for different cells or 
tissue types by A, and Am, thus precisely de- 
scribing the grading scale in terms of its ROC 
characteristics, and in essence describing perfor- 
mance for that grading scale at any decision 
point along the scale, if it were used for two cat- 
egory classification. This concept also provides 
for a uniform final scale, regardless of which 
cells or tissues are graded. Many grading 
schemes are reported in the literature, partly 
because of increased capabilities in computerized 
morphometric image analysis; there is currently 
no correspondence between grading for different 
cell or tissue types. For example, no common 
scales or units of measurement link cervical cell 
nuclear grading with breast cancer nuclear grad- 
ing, and there is no effective way to compare 
them to each other. This method would help 
with this through standardization of scales and 
the link to ROC descriptions of performance as 
described above. Finally, and very importantly, 
this type of grading scale would also incorporate 
the concept of measurement variance by refer- 
ence to normal cells or tissues into the concept of 
a grading scale. The scale would automatically 
adjust for different cell types, for example cervi- 
cal versus breast, which might have different 
variances for individual normal categories under 
presumably different measurements employed. 
This would be an aid to interpretation since 
grading numbers, e.g., + 1.3, etc., would already 
be adjusted for biological variation of the normal 
reference cell population. 

The overlap between normal and abnormal 
shown in Figure 3c for the morphometric image 
analysis is similar to the overlap in Figure 3b for 

the human observers on the same cells, indicat- 
ing that this may be close to the best perfor- 
mance that can be obtained for morphometric 
cell classification. As an example of the above 
discussion, both in terms of overall cell recogni- 
tion ROC performance and grading, if grading 
and not classification performance is of interest, 
Figure 4b might define a grading scale for transi- 
tions from normal to dysplastic for cervical cells. 
The high degree of overlap between distinct cate- 
gories, and the implied high FP and FN error 
rates, is only important if the cell recognition 
task is artificially constrained to a classification 
task. If the cell recognition task is redefined as a 
morphometric grading task, where the aim is to 
place individual cells on a continuum, then a 
high degree of categorical overlap is not a prob- 
lem. In this case, an individual cell could have a 
grading score of + 1.5 on this scale and be com- 
pletely defined by its 8 morphometric measure- 
ments, placing it reliably in the progression from 
normal to atypia rather than in the overlap re- 
gion of high FP and FN errors. Thus, fixed cate- 
gorization cell recognition tasks by the older vi- 
sual descriptive techniques of microscopy, which 
evidence low performance ROC characteristics, 
and where there is a biological rationale for sub- 
tle progression between the previously defined 
visual categories, may actually be considered 
"ideal" for quantitative morphometric grading, 
since the redefined scale can actually define a 
maturation or atypia sequence quantified in 
terms of the morphometric measurements. In 
summary, these visual inspection tasks could be 
considered as graded maturation situations in- 
stead of multicategory classification situations, 
where by definition the cell is at the stage indi- 
cated by the scale. This would eliminate the im- 
plication of high error rates. 

The methods of study design and analysis 
shown here may provide a useful paradigm for 
future SEB studies. For example, if a morpho- 
metric image analysis is developed for nuclear 
grade in breast cancer as a SEB, the discrimina- 
tory ability of the pathologist in determining 
normal, atypia and premalignant nuclear grades 
would be important. Likewise, in evaluating pre- 
malignant lesions in esophageal cancer, the abil- 
ity of the trained observer to detect and grade 
the continuum of developing patterns would be 
a reference point for morphometric image analy- 
sis of the histological tissue structure. 
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